Supervised Learning for Detection of Duplicates in Genomic Sequence Databases

نویسندگان

  • Qingyu Chen
  • Justin Zobel
  • Xiuzhen Zhang
  • Karin Verspoor
چکیده

MOTIVATION First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. RESULTS We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised duplicate detection using sample non-duplicates

The problem of identifying objects in databases that refer to the same real world entity, is known, among others, as duplicate detection or record linkage. Objects may be duplicates, even though they are not identical due to errors and missing data. Traditional scenarios for duplicate detection are data warehouses, which are populated from several data sources. Duplicate detection here is part ...

متن کامل

Record Matching : Improving Performance in Classification

Duplication detection identifies the records that represent the same real-world entity. This is a vital process in data integration. Record matching refers to the task of finding entries that refer to the same entity in two or more files. Performing record matching solves the duplication detection problems; hence the needs for identifying the suitable record matching technique follow. Supervise...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Fast and accurate semi-supervised protein homology detection with large uncurated sequence databases

Establishing structural and functional relationship between sequences in the presence of only the primary sequence information is a key task in biological sequence analysis. This ability is critical for tasks such as inferring the superfamily membership of unannotated proteins (remote homology detection) when no secondary or tertiary structure is available. Recent methods such as profile kernel...

متن کامل

Duplicates, redundancies and inconsistencies in the primary nucleotide databases: a descriptive study

GenBank, the EMBL European Nucleotide Archive and the DNA DataBank of Japan, known collectively as the International Nucleotide Sequence Database Collaboration or INSDC, are the three most significant nucleotide sequence databases. Their records are derived from laboratory work undertaken by different individuals, by different teams, with a range of technologies and assumptions and over a perio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016